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G E O M E T R I C A L L Y  N O N L I N E A R  A N A L Y S I S  OF  T H E  S T R E S S -  

S T R A I N  S T A T E  O F  T O R O I D A L  S H E L L S  U N D E R  P U R E  
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S. V. Levyakov UDC 539.3 

The stress-strain state of toroidal shells (curvilinear tubes) under bending with end moments was considered for the 

first time in [1, 2] where the problem was formulated and approximate solutions in the framework of small elastic displacements 

were found. In [3-6], on the basis of different approaches, refined solutions were obtained which make it possible to cover a 

wide range of variation of geometrical parameters of the tubes. 

In [7], the nonlinear deformation of circular cylindrical shells under pure bending was studied, utilizing the assumptions 

[2] and the value of the limiting bending moment for which the loss of stability for the shell occurs was found. In [8, 9], 

attempts were made to improve the results [7] by means of retention of small terms, but as in [7] the linear relations for 

circumferential strain and the angle of rotation of the tangent to the cross-sectional contour were used. In [10], the problem 

of finite bending of cylindrical shell was reduced to a fourth-order system of two nonlinear differential equations which was 

solved in [11-!4]. Nonlinear deformation and the stability of shells of elliptical cross section were treated in [15]. In [16], 

nonlinear equations for the bending of curvilinear tubes were derived, and an approximate analytical solution for the case of 

small initial curvature of the tube was obtained. Approximate solutions of the problem may also be found in [17, 18]. The 

formulation of the tube bending problem was discussed in [19, 20] from the standpoint of the geometrically nonlinear theory 

of shells. In [19], the nonlinear deformation of toroidal shells was also examined on the basis of numerical algorithms, and 

comparison with the results of other authors was carried out. 

Analysis of the studies dealing with the Dubyaga-Karman-Brazier problem shows that in most of them shells of 

circular cross section were considered. The known analytical solutions are applicable only for shells with small initial curvature 

of the axis and do not make it possible to study the stress-strain state under finite bending which is accompanied by 

considerable distortion of the cross section. It is of interest to study the effect of geometrical nonlinearity on the magnitude 

and character of the stress distribution in shells as well as to estimate the range of applicability of the known approximate 

solutions on the basis of the ref'med approach. 

We consider a thin-walled toroidal shell bent in the plane of curvature of its axial line with end moments M. Let the 

shape of the cross section (the meridian) be defined in the parametric form x i = xi(s), where s is the arc length, and i = 1, 

2. We assume that the cross sections which are normal to the axial line remain plane and normal to the axial line in the process 

of loading the shell, but can deform in their plane. The stress-strain state depends only on the coordinates, which agrees with 

the formulation of [1, 2, 7]. On the basis of the assumed assumptions and the Kirchhoff-Love hypotheses we write the 
equation of shell surface in its initial and deformed state in the vector form 

R =  R o + e x ~ +  zn, R v =R0V + eV, xVi + znv ( i =  1,2), (1) 

where R o is the radius-vector of the axial line, e i = el(t) are the unit vectors lying in the plane of the cross section, t is the 

arc length of the axial line of the shell, n = eiX ~ is the unit normal vector to the middle surface of the shell, k n are the direction 

cosines of the normal vector, z is the normal coordinate to the middle surface of the shell, and the superscript v denotes 

quantities which refer to the deformed state. Here and henceforth the rule of summation over repeating indexes is employed. 

Using the Eq. (1), we obtain the relations for the strains and the curvature changes of the middle surface of the shell 

in the meridional and axial directions: 
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Here, A t = 1 + kx I is the Lam6 parameter, e and k are the strain and curvature of  the axial line, and the prime denotes 

derivatives with respect to the coordinates. 

The potential strain energy of  a toroidal shell with unit length of the axial line has the form 

1 
n = - ~ f ( r ,  + r e  + m, , .  + m, , , )aas ,  (3) 

where T s, Tt, M s, and M t are the forces and the bending moments which for the case of an isotropic, linear-elastic body are 

connected with the strains and the curvatures changes (2) by the following relations: 

r = n(*.  + re,) ,  7", = a ( , ,  + ~ ) ,  

M = D ( x  + v,~), M = Z)(~ + , , x ) ,  

B ffi E h ( 1  - v2) - l ,  D = B h 2 / 1 2 .  

(4) 

Here, E is Young's modulus, v is Poisson's ratio, and h is the thickness of the shell. 

The total potential energy has the form U = H - -  A, where A = M(k v _ k) is the work of the external bending 

moments. 

We divide the shell into finite elements with length I in the meridional direction. Writing the Taylor series expansion 

of  the unknown functions and neglecting small terms of  order O(12), we obtain an approximate variant of  the deformation 

relations (2) for a finite element: 

e, = aTl(e + kVx[ - /,xx), , ,  = A , ' ( k  ~ ~ - i a ; ) ,  

1 
e -- i ( h b ,  x~x~ - 1), (5) 

~ = ~ ,o , ,o ,  = b , (a; ,v~;  - a , % ~ ) ,  

1 1 
A t = 1 + k, x l ,  X 1 2(Xll + X12)' '~1 2(all + Jl12)' 

bl = - b  2 = - I / l ,  N, = (6s - 40r-' .  N 2 = (6s - 2 0 t  -2 

(xij, ~i~(i, j = 1, 2) are the coordinates and direction cosines of the normal vector at the j-th node of  an element). We introduce 

the five-components vector of the generalized elastic displacements 

u" = I% 0x, 02, % x,I. 
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Substituting the relations (4) and (5) into (3) and integrating between the limits 0 and l, we obtain the potential strain energy 
of an element in the form I-1 = (1/2)uTKu, where the nonzero coefficients of  the symmetric stiffness matrix K are given by 

the expressions 

X n = B A I ,  K, ,  = v K n ,  K, ,  ffi D F ' [ 4  + k(ax  n + xt2 ) ], 

x , ,  = 2 o a r ' ,  g ~  = - , . o ( 1  + ~,,), 
K3, = O r t [ 4  + k (x  n + 3xta ) l, Kas ffi vO(l  + kxz~ ), 

K u .= K n, Kss = DA, L 

One feature of  the given formulation of the problem is that a finite element of  the shell contains the following nodal 
and non-nodal unknowns which form the vector of the generalized coordinates q: 

v v ~ v v q" = Ix~ ,  xn ,  ~'~, x , x . ,  r e, kvl  

(9i v is the angle of rotation of the normal vector at the i-th node). 

We write the Taylor series expansion of the potential energy of an element with respect to the increments of the 
generalized coordinates 8q in the neighborhood of a certain deformed state: 

l 
II = II o + 5YI + ~-5:II  + . . . .  (6)  

~ I I  = g~Sq, ~21"I = 5qq'-ISq 
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(g and H are the gradient and the Hess matrix of the potential energy). When the potential energy is a quadratic function of 

the components of the vector u, one obtains the following expressions [21]: 

g =  u'P,  P f K u ,  

t ~  n = u tru'~+ p,u, (i = I ..... S) 

(u'  and u~'are the matrices containing the first and second derivatives of the components of  the vector u with respect to the 

generalized coordinates). 

If we confine ourselves to the given terms of the expansion (6), use of  the principle of stationary potential energy ~U 

= 0 for the assemblage of  f'mite elements will lead to the system of equations 

Hc~q + g -  Q = 0, (7) 

where g and H are the gradient and the Hess matrix of the assemblage of finite elements, and Q is the vector of the generalized 

external forces. Solving the system of equations (7) represents one step in the kerative process of finding the equilibrium state 

of the discrete system. After the quantities cSq are determined, the new values of the unknowns are calculated by means of the 

following (no summation over j): 

(x~.)" = .or ~ + 3x~ ,  ( 2 ~ ) "  = 2"~# c o s ~ o ;  + ~,j s in~7 , ; ,  

e* = e + 6 e , ( k V )  * = k v + ~ k  ~ 

(X~ are the direction cosines of  the unit vector, normal to njV). The process of solution in accordance with scheme (7) is 

repeated until the specified accuracy of determining the unknowns is satisfied. 

To calculate the toroidal shells, one needs as initial data the values of the coordinates and the direction cosines of the 

normal vector at the nodes of  the cross section under consideration. 

Let us investigate the stress state of toroidal shells of circular cross section with radius r, which are characterized by 
various values of  curvature parameter # = (12(1 - -  u2))l/2kr2/h with r/h. = 100 and v = 0. In Tables 1 and 2 we give the 

dependences of the maximum values of axial stresses a t and circumferential (meridional) stresses a s on the parameter of 

curvature change or the axial line oz = # v _ #. 

It should be noted that the point having the coordinate ~*, where the maximum axial stresses a F occur, is displaced in 

the process of deformation of  the shell toward the neutral line (Fig. 1). Moreover, this displacement is most noticeable for 

shells with small values of the curvature parameter (# < 5). When/z > 10 the maximum stresses occur in the neighborhood 

of the neutral line and the corresponding coordinate ~* varies slightly with bending of  the shell. The approximate solutions [7, 

16] represented by the dashed curves in Fig. 1 and the bracketed values in the Tables I and 2 describe satisfactorily the stress 

state only for shells with small initial curvature (/z < 1). The results of [16] lead to the largest error in determining the 

maximum circumferential stresses a s which occur at the point ~ = 7r/2. Thus, for the case of/~ = 1 in the region of small 

curvature changes of the shell axis (oz < 0.5) the relative error amounts to 6% and increases to 26% for oz = 2. 

In Fig. 2 we show the distribution of stresses over the section of the shell with parameter/~ = 2 for various values 

of oz. As a result of flattening the cross section the circumferential stresses a s, which occur mainly due to bending of the wall, 

have the largest magnitude. 

Let us consider bending of  a toroidal shell of noncircular section whose form is described by the expression [22] 

0 = ~ + 0 ,5 s in~  - 0 ,9452sin22j  + 0 , 3 s i n 3 ~  - 0 , 4 s i n 4 ~ ,  ~ = s / r ,  
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where 0 is the angle between the normal vector n and the x 1 axis, r = L/27r is the reduced radius of  the section, and L is the 

perimeter of the section. The Cartesian coordinates are determined by numerical integration of the relations x[ = - sinO and 

x~ = cosO. 

Analysis of the linear problem of bending of  shells with various curvature parameters of the axial line indicates that 

in the region of  large values of/z > 30 for the flexibility factor f the formula f = 0.155# is valid. 

In Table 3 we represent the dependence between the dimensionless parameters of  bending moment m = (12(1 - -  

~2))t/2Mr2/hEI (I being the moment of inertia of  the cross section) and the curvature change of  the axial line t~ of the shell for 

the case r/h = 100, v = 0.3, and # = 50. The linear solution of the problem m = calf is acceptable in the narrow range - 0 . 4  

__< o~ .,< 0.4. The value of  the limiting moment corresponding to the bending of the shell (ct > 0) amounts to m = 0.6. 

The forms of  deformed cross section for various values of  ~ are presented in Fig. 3. In Figs. 4 and 5 we show the 

distribution of the stresses over the section of the shell. The axial stresses were calculated for the middle surface, while the 

meridional ones were calculated for the outer surface of  the shell. It should be noted that for ~ > 0 the stresses are localized 

in the neighborhood of  the neutral line, the meridional stresses exceeding the axial stresses by a factor 2-2.5. 

We remark finally that it took about 4 min to calculate the stress-strain state of  the shell for the range - 4 . 8  < ~ < 

24 with double precision calculations carried out on a PC AT 286 computer. 
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